Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(37): 43648-43655, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37696006

RESUMO

As state-of-the-art (SOA) lithium-ion (Li-ion) batteries approach their specific energy limit (∼250 Wh kg-1), layer-structured, nickel-rich (Ni-rich) lithium transition metal oxide-based cathode materials, e.g., LiNi0.8Mn0.1Co0.1O2 (NMC811), have attracted great interest owing to their practical high specific capacities (>200 mAhg-1). Coupled with their high average discharge voltages (∼4 V vs Li/Li+), Ni-rich cathode-based lithium batteries possess a great potential to achieve much higher specific energies (>350 Wh kg-1 at the cell level) than the SOA Li-ion counterparts. In addition, Ni-rich oxides are low-cost battery cathode materials due to their low cobalt contents. However, Ni-rich cathode-based lithium batteries suffer quick capacity degradations upon cycling, particularly at high upper cutoff voltages (e.g., ≥4.5 V vs Li/Li+), due to crystal structure changes of the active cathode materials and parasitic side reactions at the electrolyte/electrode interfaces. In this study, a fluorinated-solvent-based, high-voltage stable electrolyte (HVE), i.e., 1 M Li bis(trifluoromethanesulfonyl)imide (LiTFSI) in fluoroethylene carbonate (FEC), bis(2,2,2-trifluoroethyl) carbonate (FDEC), and methyl (2,2,2-trifluoroethyl) carbonate (FEMC) with Li difluoro(oxalate)borate (LiDFOB) additive, was formulated and evaluated in Li/NMC811 battery cells. To the best of our knowledge, this class of electrolyte has not been investigated for Ni-rich cathode-based lithium batteries. Li/NMC811 cells with HVE exhibited a superior long-term cycle performance stability, maintaining ∼80% capacity after ∼500 cycles at a high cutoff voltage of 4.5 V (vs Li/Li+) than a baseline carbonate-solvent-based electrolyte (BE). The superior cycle stability of the Li/NMC811 cells is attributed to the inherently high-voltage stability of HVE, supported by the physical and electrochemical analyses. This conclusion is supported by our density functional theory (DFT) modeling where HVE shows a less tendency of deprotonation/oxidation than BE, leading to the observed cycle stability. The findings in this study are important to help tackle the technical challenges facing Ni-rich cathode-based lithium batteries to realize their high energy density potentials with a long cycle life.

2.
ACS Nano ; 17(13): 12347-12357, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37358564

RESUMO

Controlling the domain evolution is critical both for optimizing ferroelectric properties and for designing functional electronic devices. Here we report an approach of using the Schottky barrier formed at the metal/ferroelectric interface to tailor the self-polarization states of a model ferroelectric thin film heterostructure system SrRuO3/(Bi,Sm)FeO3. Upon complementary investigations of the piezoresponse force microscopy, electric transport measurements, X-ray photoelectron/absorption spectra, and theoretical studies, we demonstrate that Sm doping changes the concentration and spatial distribution of oxygen vacancies with the tunable host Fermi level which modulates the SrRuO3/(Bi,Sm)FeO3 Schottky barrier and the depolarization field, leading to the evolution of the system from a single domain of downward polarization to polydomain states. Accompanied by such modulation on self-polarization, we further tailor the symmetry of the resistive switching behaviors and achieve a colossal on/off ratio of ∼1.1 × 106 in the corresponding SrRuO3/BiFeO3/Pt ferroelectric diodes (FDs). In addition, the present FD also exhibits a fast operation speed of ∼30 ns with a potential for sub-nanosecond and an ultralow writing current density of ∼132 A/cm2. Our studies provide a way for engineering self-polarization and reveal its strong link to the device performance, facilitating FDs as a competitive memristor candidate used for neuromorphic computing.

3.
Phys Rev Lett ; 130(12): 126801, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37027865

RESUMO

The increasing miniaturization of electronics requires a better understanding of material properties at the nanoscale. Many studies have shown that there is a ferroelectric size limit in oxides, below which the ferroelectricity will be strongly suppressed due to the depolarization field, and whether such a limit still exists in the absence of the depolarization field remains unclear. Here, by applying uniaxial strain, we obtain pure in-plane polarized ferroelectricity in ultrathin SrTiO_{3} membranes, providing a clean system with high tunability to explore ferroelectric size effects especially the thickness-dependent ferroelectric instability with no depolarization field. Surprisingly, the domain size, ferroelectric transition temperature, and critical strain for room-temperature ferroelectricity all exhibit significant thickness dependence. These results indicate that the stability of ferroelectricity is suppressed (enhanced) by increasing the surface or bulk ratio (strain), which can be explained by considering the thickness-dependent dipole-dipole interactions within the transverse Ising model. Our study provides new insights into ferroelectric size effects and sheds light on the applications of ferroelectric thin films in nanoelectronics.

4.
Nature ; 613(7945): 656-661, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653455

RESUMO

Domain-wall nanoelectronics is considered to be a new paradigm for non-volatile memory and logic technologies in which domain walls, rather than domains, serve as an active element. Especially interesting are charged domain walls in ferroelectric structures, which have subnanometre thicknesses and exhibit non-trivial electronic and transport properties that are useful for various nanoelectronics applications1-3. The ability to deterministically create and manipulate charged domain walls is essential to realize their functional properties in electronic devices. Here we report a strategy for the controllable creation and manipulation of in-plane charged domain walls in BiFeO3 ferroelectric films a few nanometres thick. By using an in situ biasing technique within a scanning transmission electron microscope, an unconventional layer-by-layer switching mechanism is detected in which ferroelectric domain growth occurs in the direction parallel to an applied electric field. Based on atomically resolved electron energy-loss spectroscopy, in situ charge mapping by in-line electron holography and theoretical calculations, we show that oxygen vacancies accumulating at the charged domain walls are responsible for the domain-wall stability and motion. Voltage control of the in-plane domain-wall position within a BiFeO3 film gives rise to multiple non-volatile resistance states, thus demonstrating the key functional property of being a memristor a few unit cells thick. These results promote a better understanding of ferroelectric switching behaviour and provide a new strategy for creating unit-cell-scale devices.

5.
RSC Adv ; 11(49): 30955-30960, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35498944

RESUMO

High energy density magnets are preferred over induction magnets for many applications, including electric motors used in flying rovers, electric vehicles, and wind turbines. However, several issues related to cost and supply with state-of-the-art rare-earth-based magnets necessitate development of high-flux magnets containing low-cost earth-abundant materials. Here, by using first-principles density functional theory, we demonstrate the possibility of tuning magnetization and magnetocrystalline anisotropy of one of the candidate materials, MnBi, by alloying it with foreign elements. By using density functional theory in the high-throughput fashion, we consider the possibility of various metal and non-metal elements in the periodic table occupying empty sites of MnBi and found that MnBi-based alloys with Rh, Pd, Li, and O are stable against decomposition to constituent elements and have larger magnetization energy product compared to MnBi. Combined with other favorable properties of MnBi, such as high Curie temperature and earth abundancy of constituent elements, we envision the possibility of MnBi-based high-energy-density magnets.

6.
Sci Adv ; 6(30): eaba4017, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32832665

RESUMO

Engineered heterostructures formed by complex oxide materials are a rich source of emergent phenomena and technological applications. In the quest for new functionality, a vastly unexplored avenue is interfacing oxide perovskites with materials having dissimilar crystallochemical properties. Here, we propose a unique class of heterointerfaces based on nitride antiperovskite and oxide perovskite materials as a previously unidentified direction for materials design. We demonstrate the fabrication of atomically sharp interfaces between nitride antiperovskite Mn3GaN and oxide perovskites (La0.3Sr0.7)(Al0.65Ta0.35)O3 and SrTiO3. Using atomic-resolution imaging/spectroscopic techniques and first-principles calculations, we determine the atomic-scale structure, composition, and bonding at the interface. The epitaxial antiperovskite/perovskite heterointerface is mediated by a coherent interfacial monolayer that interpolates between the two antistructures. We anticipate our results to be an important step for the development of functional antiperovskite/perovskite heterostructures, combining their unique characteristics such as topological properties for ultralow-power applications.

7.
ACS Omega ; 5(21): 12385-12390, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32548422

RESUMO

BaTiS3 is a semiconductor with a small bandgap of ∼0.5 eV and strong transport anisotropy caused primarily by structural anisotropy; it contains well-separated octahedral columns along the [0001] direction and low lattice thermal conductivity, appealing for thermoelectric applications. Here, we evaluate the prospect of BaTiS3 as a thermoelectric material by using the linearized electron and phonon Boltzmann transport theory based on the first-principles density functional band structure calculations. We find sizable values of the key thermoelectric parameters, such as the maximum power factor PF = 928 µW K-2 and the maximum figure of merit ZT = 0.48 for an electron-doped sample and PF = 74 µW K-2 and ZT = 0.17 for a hole-doped sample at room temperature, and a small doping level of ±0.25e per unit cell. The increase in temperature yields an increase in both the power factor and the figure of merit, reaching large values of PF = 3078 µW K-2 and ZT = 0.77 for the electron-doped sample and PF = 650 µW K-2 and ZT = 0.62 for the hole-doped sample at 800 K. Our results elucidate the promise of BaTiS3 as a material for the thermoelectric power generator.

8.
Nature ; 570(7759): 87-90, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31168106

RESUMO

Two-dimensional (2D) materials such as graphene and transition-metal dichalcogenides reveal the electronic phases that emerge when a bulk crystal is reduced to a monolayer1-4. Transition-metal oxide perovskites host a variety of correlated electronic phases5-12, so similar behaviour in monolayer materials based on transition-metal oxide perovskites would open the door to a rich spectrum of exotic 2D correlated phases that have not yet been explored. Here we report the fabrication of freestanding perovskite films with high crystalline quality almost down to a single unit cell. Using a recently developed method based on water-soluble Sr3Al2O6 as the sacrificial buffer layer13,14 we synthesize freestanding SrTiO3 and BiFeO3 ultrathin films by reactive molecular beam epitaxy and transfer them to diverse substrates, in particular crystalline silicon wafers and holey carbon films. We find that freestanding BiFeO3 films exhibit unexpected and giant tetragonality and polarization when approaching the 2D limit. Our results demonstrate the absence of a critical thickness for stabilizing the crystalline order in the freestanding ultrathin oxide films. The ability to synthesize and transfer crystalline freestanding perovskite films without any thickness limitation onto any desired substrate creates opportunities for research into 2D correlated phases and interfacial phenomena that have not previously been technically possible.

9.
Adv Mater ; 31(27): e1901386, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31099075

RESUMO

Interface-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking are of importance for fundamental physics and device applications. How interfaces affect the interplay between charge, spin, orbital, and lattice degrees of freedom is the key to boosting device performance. In LaMnO3 /SrTiO3 (LMO/STO) polar-nonpolar heterostructures, electronic reconstruction leads to an antiferromagnetic to ferromagnetic transition, making them viable for spin filter applications. The interfacial electronic structure plays a critical role in the understanding of the microscopic origins of the observed magnetic phase transition, from antiferromagnetic at 5 unit cells (ucs) of LMO or below to ferromagnetic at 6 ucs or above, yet such a study is missing. Here, an atomic scale understanding of LMO/STO ambipolar ferromagnetism is offered by quantifying the interface charge distribution and performing first-principles density functional theory (DFT) calculations across this abrupt magnetic transition. It is found that the electronic reconstruction is confined within the first 3 ucs of LMO from the interface, and more importantly, it is robust against oxygen nonstoichiometry. When restoring stoichiometry, an enhanced ferromagnetic insulating state in LMO films with a thickness as thin as 2 nm (5 uc) is achieved, making LMO readily applicable as barriers in spin filters.

10.
ACS Appl Mater Interfaces ; 11(17): 15781-15787, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30964639

RESUMO

The recently discovered magnetism of two-dimensional (2D) van der Waals crystals has attracted a lot of attention. Among these materials is CrI3, a magnetic semiconductor, exhibiting transitions between ferromagnetic and antiferromagnetic orderings under the influence of an applied magnetic field. Here, using first-principles methods based on density functional theory, we explore spin-dependent transport in tunnel junctions formed of face-centered cubic Cu(111) electrodes and a CrI3 tunnel barrier. We find about 100% spin polarization of the tunneling current for a ferromagnetically ordered four-monolayer CrI3 and a tunneling magnetoresistance of about 3000% associated with a change of magnetic ordering in CrI3. This behavior is understood in terms of the spin and wave-vector-dependent evanescent states in CrI3, which control the tunneling conductance. We find a sizable charge transfer from Cu to CrI3, which adds new features to the mechanism of spin filtering in CrI3-based tunnel junctions. Our results elucidate the mechanisms of spin filtering in CrI3 tunnel junctions and provide important insights for the design of magnetoresistive devices based on 2D magnetic crystals.

11.
Nat Commun ; 10(1): 537, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30710079

RESUMO

Flexoelectricity is a universal electromechanical coupling effect whereby all dielectric materials polarise in response to strain gradients. In particular, nanoscale flexoelectricity promises exotic phenomena and functions, but reliable characterisation methods are required to unlock its potential. Here, we report anomalous mechanical control of quantum tunnelling that allows for characterising nanoscale flexoelectricity. By applying strain gradients with an atomic force microscope tip, we systematically polarise an ultrathin film of otherwise nonpolar SrTiO3, and simultaneously measure tunnel current across it. The measured tunnel current exhibits critical behaviour as a function of strain gradients, which manifests large modification of tunnel barrier profiles via flexoelectricity. Further analysis of this critical behaviour reveals significantly enhanced flexocoupling strength in ultrathin SrTiO3, compared to that in bulk, rendering flexoelectricity more potent at the nanoscale. Our study not only suggests possible applications exploiting dynamic mechanical control of quantum effect, but also paves the way to characterise nanoscale flexoelectricity.

12.
Nat Nanotechnol ; 13(12): 1191, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30291315

RESUMO

In the version of this Letter originally published, the right-hand arrow in Fig. 3b was incorrectly labelled; see correction note for details. Also, ref. 29 was incorrectly included in the reference list; it has now been removed.

13.
Nat Nanotechnol ; 13(12): 1132-1136, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30250247

RESUMO

Coupling between different degrees of freedom, that is, charge, spin, orbital and lattice, is responsible for emergent phenomena in complex oxide heterostrutures1,2. One example is the formation of a two-dimensional electron gas (2DEG) at the polar/non-polar LaAlO3/SrTiO3 (LAO/STO)3-7 interface. This is caused by the polar discontinuity and counteracts the electrostatic potential build-up across the LAO film3. The ferroelectric polarization at a ferroelectric/insulator interface can also give rise to a polar discontinuity8-10. Depending on the polarization orientation, either electrons or holes are transferred to the interface, to form either a 2DEG or two-dimensional hole gas (2DHG)11-13. While recent first-principles modelling predicts the formation of 2DEGs at the ferroelectric/insulator interfaces9,10,12-14, experimental evidence of a ferroelectrically induced interfacial 2DEG remains elusive. Here, we report the emergence of strongly anisotropic polarization-induced conductivity at a ferroelectric/insulator interface, which shows a strong dependence on the polarization orientation. By probing the local conductance and ferroelectric polarization over a cross-section of a BiFeO3-TbScO3 (BFO/TSO) (001) heterostructure, we demonstrate that this interface is conducting along the 109° domain stripes in BFO, whereas it is insulating in the direction perpendicular to these domain stripes. Electron energy-loss spectroscopy and theoretical modelling suggest that the anisotropy of the interfacial conduction is caused by an alternating polarization associated with the ferroelectric domains, producing either electron or hole doping of the BFO/TSO interface.

14.
Nat Nanotechnol ; 13(7): 618, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29849186

RESUMO

In the version of this Letter originally published, in two instances in Fig. 1 the layers in the cross-sectional view of the (001) interface were incorrectly labelled: in Fig. 1b SrO+ should have read SrO0; in Fig. 1c LaO+, AlO2-, LaO+, TiO20, SrO+, TiO20 should have read LaO33-, Al3+, LaO33-, Ti4+, SrO34-, Ti4+. In Fig. 3c the upper-right equation read -σs = -e/2a2 but should have read -σs = e/2a2 and in Fig. 3f the lower-right equation read -σs = -e/2√3a2 but should have read σs = -e/2√3a2. These errors have now been corrected in the online version of the Letter.

15.
Nat Nanotechnol ; 13(3): 198-203, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29402977

RESUMO

The breaking of symmetry across an oxide heterostructure causes the electronic orbitals to be reconstructed at the interface into energy states that are different from their bulk counterparts 1 . The detailed nature of the orbital reconstruction critically affects the spatial confinement and the physical properties of the electrons occupying the interfacial orbitals2-4. Using an example of two-dimensional electron liquids forming at LaAlO3/SrTiO3 interfaces5,6 with different crystal symmetry, we show that the selective orbital occupation and spatial quantum confinement of electrons can be resolved with subnanometre resolution using inline electron holography. For the standard (001) interface, the charge density map obtained by inline electron holography shows that the two-dimensional electron liquid is confined to the interface with narrow spatial extension (~1.0 ± 0.3 nm in the half width). On the other hand, the two-dimensional electron liquid formed at the (111) interface shows a much broader spatial extension (~3.3 ± 0.3 nm) with the maximum density located ~2.4 nm away from the interface, in excellent agreement with density functional theory calculations.

16.
Nano Lett ; 18(1): 491-497, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29236501

RESUMO

Strontium titanate (SrTiO3) is the "silicon" in the emerging field of oxide electronics. While bulk properties of this material have been studied for decades, new unexpected phenomena have recently been discovered at the nanoscale, when SrTiO3 forms an ultrathin film or an atomically sharp interface with other materials. One of the striking discoveries is room-temperature ferroelectricity in strain-free ultrathin films of SrTiO3 driven by the TiSr antisite defects, which generate a local dipole moment polarizing the surrounding nanoregion. Here, we demonstrate that these polar defects are not only responsible for ferroelectricity, but also propel the appearance of highly conductive channels, "hot spots", in the ultrathin SrTiO3 films. Using a combination of scanning probe microscopy experimental studies and theoretical modeling, we show that the hot spots emerge due to resonant tunneling through localized electronic states created by the polar defects and that the tunneling conductance of the hot spots is controlled by ferroelectric polarization. Our finding of the polarization-controlled defect-assisted tunneling reveals a new mechanism of resistive switching in oxide heterostructures and may have technological implications for ferroelectric tunnel junctions. It is also shown that the conductivity of the hot spots can be modulated by mechanical stress, opening a possibility for development of conceptually new electronic devices with mechanically tunable resistive states.

17.
Nano Lett ; 17(2): 922-927, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28094991

RESUMO

Hybrid structures composed of ferroelectric thin films and functional two-dimensional (2D) materials may exhibit unique characteristics and reveal new phenomena due to the cross-interface coupling between their intrinsic properties. In this report, we demonstrate a symbiotic interplay between spontaneous polarization of the ultrathin BaTiO3 ferroelectric film and conductivity of the adjacent molybdenum disulfide (MoS2) layer, a 2D narrow-bandgap semiconductor. Polarization-induced modulation of the electronic properties of MoS2 results in a giant tunneling electroresistance effect in the hybrid MoS2-BaTiO3-SrRuO3 ferroelectric tunnel junctions (FTJs) with an OFF-to-ON resistance ratio as high as 104, a 50-fold increase in comparison with the same type of FTJs with metal electrodes. The effect stems from the reversible accumulation-depletion of the majority carriers in the MoS2 electrode in response to ferroelectric switching, which alters the barrier at the MoS2-BaTiO3 interface. Continuous tunability of resistive states realized via stable sequential domain structures in BaTiO3 adds memristive functionality to the hybrid FTJs. The use of narrow band 2D semiconductors in conjunction with ferroelectric films provides a novel pathway for development of the electronic devices with enhanced performance.

18.
J Phys Condens Matter ; 29(7): 075801, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28032618

RESUMO

A high degree of spin polarization in electron transport is one of the most sought-after properties of a material which can be used in spintronics-an emerging technology utilizing a spin degree of freedom in electronic devices. An ideal candidate to exhibit highly spin-polarized current would be a room temperature half-metal, a material which behaves as an insulator for one spin channel and as a conductor for the other spin channel. In this paper, we explore a semi-Heusler compound, IrMnSb, which has been reported to exhibit pressure induced half-metallic transition. We confirm that the bulk IrMnSb is a spin-polarized metal, with dominant contribution to electronic states at the Fermi energy from majority-spin electrons. Application of a uniform pressure shifts the Fermi level into the minority-spin energy gap, thus demonstrating pressure induced half-metallic transition. This behavior is explained by the reduction of the exchange splitting of the spin bands consistent with the Stoner model for itinerant magnetism. We find that the half-metallic transition is suppressed when instead of uniform pressure the bulk IrMnSb is exposed to biaxial strain. This suppression of half-metallicity is driven by the epitaxial strain induced tetragonal distortion, which lifts the degeneracy of the Mn 3d t 2g and e g orbitals and reduces the minority-spin band gap under compressive strain, thus preventing half-metallic transition. Our calculations also indicate that in thin film geometry, surface states emerge in the minority-spin band gap, which has detrimental for practical applications impact on the spin polarization of IrMnSb.

19.
J Phys Condens Matter ; 28(15): 156001, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-26982512

RESUMO

The electronic structure for the conduction bands of both hexagonal and orthorhombic LuFeO3 thin films have been measured using x-ray absorption spectroscopy at oxygen K (O K) edge. Dramatic differences in both the spectral features and the linear dichroism are observed. These differences in the spectra can be explained using the differences in crystal field splitting of the metal (Fe and Lu) electronic states and the differences in O 2p-Fe 3d and O 2p-Lu 5d hybridizations. While the oxidation states have not changed, the spectra are sensitive to the changes in the local environments of the Fe(3+) and Lu(3+) sites in the hexagonal and orthorhombic structures. Using the crystal-field splitting and the hybridizations that are extracted from the measured electronic structures and the structural distortion information, we derived the occupancies of the spin minority states in Fe(3+), which are non-zero and uneven. The single ion anisotropy on Fe(3+) sites is found to originate from these uneven occupancies of the spin minority states via spin-orbit coupling in LuFeO3.

20.
J Am Chem Soc ; 137(25): 8227-36, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26011597

RESUMO

A sharp potential drop across the interface of the Pb-rich halide perovskites/TiO2 heterostructure is predicted from first-principles calculations, suggesting enhanced separation of photoinduced charge carriers in the perovskite-based photovoltaic solar cells. The potential drop appears to be associated with the charge accumulation at the polar interface. More importantly, on account of both the ß phase structure of CH3NH3Sn(x)Pb(1-x)I3 for x < 0.5 and the α phase structure of CH3NH3Sn(x)Pb(1-x)I3 for x ≥ 0.5, the computed optical absorption spectra from time-dependent density functional theory (TD-DFT) are in very good agreement with the measured spectra from previous experiments. Our TD-DFT computation also confirms the experimental structures of the mixed Pb-Sn organometal halide perovskites. These computation results provide a highly sought answer to the question why the lead-based halide perovskites possess much higher power conversion efficiencies than the tin-based counterparts for solar-cell applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...